
Naval Research Laboratory
Washington, DC 20375-5320

NRL/MR/5540--07-9067

Xenon Formal Security Policy Model

August 14, 2007

Approved for public release; distribution is unlimited.

John McDermott
James Kirby
Myong Kang
Bruce Montrose

Center for High Assurance Computer Systems
Information Technology Division

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

3. DATES COVERED (From - To)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT
	 NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR / MONITOR’S ACRONYM(S)9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR / MONITOR’S REPORT
	 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

b. ABSTRACT c. THIS PAGE

18. NUMBER
OF PAGES

17. LIMITATION
OF ABSTRACT

Xenon Formal Security Policy Model

John McDermott, James Kirby, Myong Kang, and Bruce Montrose

Naval Research Laboratory, Code 5540
4555 Overlook Avenue, SW
Washington, DC 20375-5320

NRL/MR/5540--07-9067

Approved for public release; distribution is unlimited.

Unclassified Unclassified Unclassified
UL

John McDermott

(202) 404-8301

Formal security policy model
Virtual machine monitor

Xenon is a high-assurance virtual machine monitor based on the Xen open-source hypervisor. We model the Xenon high-assurance virtual
machine monitor’s security policy as a conditional non-interference policy, using an event-based paradigm and the Communicating Sequential
Processes (CSP) formalism. Our single model formally describes not only the separation of information flow but also the sharing. We also present
our strategy for showing correspondence between this model and the Xenon interface.

14-08-2007 Final Report

28

Jan 2007 – Apr 2007

CSP
Non-interference

IT-235-007

6475

CONTENTS

iii

1	 Introduction..4

	 1.1	 Conditional MSL Information Flow Policy..2
	 1.2	 The MSL Separation Policy..3
	 1.3	 The MSL Sharing Policy...4
	 1.4	 The CSP Formalism..4

2	 The Formal Model..5

	 2.1	 Interfaces...6
	 2.2	 Events and Data Values...6
	 2.3	 Guest OS Processes...7
	 2.4	 Boundary Controller...9
	 2.5	 VMM..10
	 2.6	 Complete Model..12

3	 Rationale...13

	 3.1	 Deadlock Freedom..14
	 3.2	 Separation...14
	 3.3	 Sharing..17

4	 Semiformal Correspondence Demonstration...18

	 4.1	 Basic Mapping..19
	 4.2	 Externally Visible Data...20
	 4.3	 Request-Response and Transients...21
	 4.4	 Nondeterministic Interrupts..21
	 4.5	 Subjects and Objects...22
	 4.6	 Least Privilege..22
	 4.7	 Using the Model and Correspondence Demonstration...23

5	 Summary...23

References...23

Xenon Formal Security Policy Model

J. McDermott, J. Kirby, M. Kang, and B. Montrose
Naval Research Laboratory

14 June 2007

Abstract

Xenon is a high-assurance virtual machine monitor based on the Xen open-source
hypervisor. We model the Xenon high-assurance virtual machine monitor’s security
policy as a conditional non-interference policy, using an event-based paradigm and
the CSP formalism. Our single model formally describes not only the separation of
information flow but also the sharing. We also present our strategy for showing corre-
spondence between this model and the Xenon interface.

1 Introduction

This report defines the formal security policy model for the Xenon high-assurance vir-
tual machine monitor (VMM) version of the Xen hypervisor [1, 2]. High-assurance vir-
tual machine monitors are used to provide highly robust information flow control, tamper-
resistance, and self-protection for communities of users, based on shared interests or re-
sponsibilities of those communities. The distinction that protection is not being provided
for individual applications, network protocols, or users. Instead, host processing for all ap-
plications, network protocols, and users hosted by an execution environment is separated
on the basis of information flow control between user communities. For example, suppose
a large business forms a new partnership with another business that is alsoa potential com-
petitor. The partnership involves joint research and development of a new product line.
That partnership constitutes an interest group or community for the employees working on
the partnership. The community of interest working on this new product line needs a highly
robust shared execution environment that controls information flow. Protecting and separat-
ing network communication for this community is necessary but not sufficient, since weak
execution environments at the end points of communication can be compromised.

Information flow control in execution environments is a difficult problem. In contrast
to communication networks, execution environments provide processing as well as storage
and communications. Because of this, they have a much richer set of possible operations.
Interactions among this richer set of operations can cause many different forms of unin-
tentional information flow, as a side-effect of intentional or authorized processing. Strong

1

Manuscript approved June 27, 2007.

information flow control must address all of these possible forms of information flow. Vir-
tual machine monitors finesse the problem by partitioning these large sets of possible flows
into relatively small numbers of virtual execution environments, based on user communi-
ties. Some virtual machine monitor implementations are candidates for strong information
flow security because their implementations are small and do not evolve rapidly[3].

The Xenon formal security policy model serves as: 1) a key element in the policy-
to-code modeling chain, and 2) evidence for a Common Criteria security evaluation. A
formal security policy model is needed to meet the Common Criteria requirements for high-
assurance. Xenon currently considers high assurance to approximatethe Common Criteria
EAL6 package, depending on which version [4] of the Common Criteria areused.

1.1 Conditional MSL Information Flow Policy

Xenon’s basic approach to separating user communities is amultiple single levels (MSL)
information flow policy:

• each community is given a separate execution environment and

• information flow between the environments is limited to a restricted form of replica-
tion, i.e. when an execution environment wants to read data from another domain, it
reads a local replica.

For Xenon, the MSL separation policy is formally modeled as a special kind ofcondi-
tional non-interference policy [5]. A non-interference policy is defined for two sets of sub-
jectsHigh andLow: information is not allowed to flow fromHigh to Low. Non-interference
policies define the way in which aHigh subject is prevented from interfering with the be-
havior of aLow subject. In terms of the security domain lattice, case 2 has domaindomi

asLow anddomj asHigh (domj may not interfere withdomi), and case 3 has both do-
mainsdomi anddomj in the role ofHigh (neither domain may interfere with the other).
A conditional non-interference policy allows some flows fromHigh to Low, via restricted
communication paths.

The Xenon MSL policy begins with a definition of the security domains that serve as
sources and destinations of information flows. We take security domain names(e.g.i andj)
from some finite set of the nonnegative integersD = {0, 1, . . . , b− 1}. (Later in the model
we also use singleton set{b} for the top-level system domain that is always authorized to
see anything on the system. Then our domain names are taken fromD ∪ {b}.)

For any pair of security domains(domi, domj), one of three policy relationships exists:

1. information may flow in both directions between the domains (we saydomi =
domj);

2. information may flow fromdomi to domj (we saydomi domj);

3. information may not flow betweendomi anddomj (we say that the security domains
are incomparable).

2

If we assume least upper and greatest lower bound security domains thenthis is of course
the classical information flow lattice of Denning [6,7]. In the Xenon formal model we call
this lattice thesecurity domain lattice. It is necessary to talk about the security domain
lattice because some flows allowed by the MSL information flow policy do not obey the
security domain lattice relationship.

The MSL information flow policy is a two-part policy defined over the securitydo-
mains: aseparation policyand asharing policy. The separation policy prohibits all in-
formation flows between domains. The sharing policy modifies this to allow only flows
between a pair of domains when one of the domains is theboundary controllerdomain that
acts as the least upper bound of all the security domains. Restated, the sharing policy only
allows direct flows to or from the boundary controller domain. All other flowis prohibited.
The sharing policy also restricts the flows allowed from the boundary controller itself. In-
tuitively, the flows allowed by the boundary controller either replicate information “up” or
downgrade information back to a “lower” security domain.

1.2 The MSL Separation Policy

There is a large body of mathematical work on confidentiality, information flow,and separa-
tion policies. This work had its beginnings in Bell-LaPadula [8] and Denning [6,7]. Goguen
and Meseguer’snon-interference[5] represents an important mathematical refinement that
led to extensive research on information flow policies. The work of McLean [9] unified
many of these various models of information flow security. Shortly after this, process alge-
bra researchers made significant progress in two areas: expressingformal non-interference
models in a widely understood general purpose notation and clarifying someof the more
subtle issues related to McLean’s model. Significant examples of this work are Roscoe
et al.’s concepts of lazy and eager abstraction, [10], Roscoe’s useof determinism in non-
interference policy modeling [11] and Ryan and Schneider’s process algebra generalization
of non-interference [12].

Recent work in security modeling [13] has focused on the safety problemfor security
[14]. Since this problem is focused on access control policies rather than information flow
policies, there is little application to our Xenon model.

Recent work on MILS separation kernels has produced a new kind of formal separation
policy model written directly in machine processable ACL2 [15,16]. The keydifference in
this formal model is not that it uses a machine processable notation but that itmodels sepa-
ration in terms of memory segments, i.e.infiltration andexfiltration. Defining separation in
terms of memory segments instead of events could be problematic for behavior that could
be made to change without violating segment rules. Examples would be inter-process com-
munication primitives such as locks or semaphores, machine instruction results, hypercall
results, traps, and interrupts. For an informal example, suppose a VMM implementation
has a hypercallh that returns an integer value into a segment that the guest requesting the
hypercall can read. A VMM that was not secure might allow a second guest to cause the
VMM to return 1 = h(x) to the requesting guest some of the time and0 = h(x) at other
times. Modulating hypercall, instruction, or interrupt results like this would notviolate any

3

policy regarding the state of memory segments. Further discussion of this issue is outside
the scope of the Xenon work. We did not try to address this in Xenon but chose to extend
the concept of more abstract policy modeling that began with Bell-LaPadula.

1.3 The MSL Sharing Policy

Usable systems support controlled sharing of information across domains that are otherwise
to be separated. The MSL formulation of this policy breaks the allowable information
flow into two parts: 1) flow in the direction defined by the security domain lattice, when
domi domj (intuitively from Low to High), and 2) flow against the direction defined by
the security domain lattice (downgrading).

1.4 The CSP Formalism

The Xenon formal security policy model is written in CSP [17, 18] and is based on the
work of Roscoe in defining non-interference policies via nondeterminism [11]. Process
algebras like CSP are well-suited to modeling non-interference and other information flow
security policies because they are trace-based and ultimately information flowsecurity is
defined over sets of system traces [9]. This subsection presents a brief informal review of
CSP as used in the security policy model, to assist the reader in understanding the model.
Following the proofs will require more knowledge of CSP. The specific CSPsyntax of
the model follows Roscoe [17]. Unless otherwise specified, the model usesstable failures
denotational semantics [17,18].

CSP is a calculus for reasoning about patterns of communication between multiple
threads of computation. Communication is instantaneous; ordinary CSP does not model
the duration of events. The communication patterns are defined as sets of traces of events.
Events are instantaneous but may be compound, in the sense that instantaneous eventx.i.j
has three values that are communicated to any process that shares that event. The direction
of communication is irrelevant, although CSP provides syntactic sugar to remindthe reader
which process is meant to be the sender or receiver. For example, in the send eventhyp!op
the “!” replaces the dot separator “.” inhyp.op, indicating a valueop sent on a communi-
cation channel namedhyp. The same event writtenhyp?op would remind the reader that
the event is being interpreted as a receive, in the process containing it.

The fundamental CSP construction is theprocess, an entity that generates or partici-
pates in events chosen from itsalphabet. A (recursively defined) sequential processP1 that
generates traces such as〈a, a, a〉 is written asP1 = a → P1. The set of all possible traces of
a processP1 is denotedtraces(P1). The traces of processP1 include the empty trace〈〉, as
well as〈a〉, 〈a, a〉, and the unbounded trace〈a, a, a, . . .〉. The processP2 = a → b → P2

generates traces of the form〈a, b, a, b . . .〉 with a and b events in strict alternation. For
terminating processes there are constant processes likeSKIP that do nothing. A sequen-
tial process communicates with its environment whenever it agrees with its environment
about the next event that can happen. If a process has no possible agreement with its en-
vironment then it is equivalent to the constant (deadlocked) processSTOP . A sequential

4

process can offer an initial choice of (component) processes:P3 = c → P3 � d → P3

has the trace〈d, d, d, d, c, d, c, c, d〉 ∈ traces(P3), in its set of traces. Theexternal choice
operator� shows that processP3 begins with a choice, made byP3’s environment, of
either the left hand componentc → P3 or the right hand componentd → P3. Process
Q1 = a → Q1 � b → SKIP can never have more than oneb event in its traces and no
a events may follow theb event; ifQ1’s environment ever choosesb then it gets no more
chances to choose the left hand component. CSP choice operators can be indexed, just
as addition+ can be indexed to become summationΣ. An example of indexed external
choice from the formal model is the processGSHRi in Equation 3 where external choice is
indexed over possible downgrading requestsx.i.j.

Sequential processes model a single thread; we can applyconcurrency operatorsto
groups of sequential processes to model multi-threaded computation. Processes in commu-
nication that agree on the next event will share that event. The easiest concurrency operator
to understand has no sharing at all:interleaving ||| which combines its operands to ex-

ecute concurrently without communication. So processQ2 = P1 |||P2 can have traces
〈a, a, a, b, a, b, a〉 and〈a, b, a, b, a, b〉. Generally, it is nondeterministic as to which process
is responsible for identical events when they are concurrent but not communicated. With-
out communication, the identical event occurs separately in each process. Since our model
needs determinism at certain points, we avoid interleaving over processeswith identical
events. Interleaving can be indexed as well; Equation 3 has processGi defined by indexed
interleaving.

For concurrency with communication, our model uses thealphabetized paralleloper-
ator

X
||

Y
with interfacesX andY . The interfaces of alphabetized parallel are event sets

that show which events are communicated on the corresponding side of the parallel oper-
ator. Events that are inX ∪ Y are synchronized over the two processes. So if we define
interfacesX = Y = {a}, then processQ3 = P1

X
||

Y
P2 has the same traces as processP2

because bothP1 andP2 execute theira events at the same time.
A final bit of CSP used in the model is aparameterized process, as in parameterized

processP (x). In this process, parameterx is either an event or part of an event that is used
in the definition of processP (x), e.g.P (x) = x.i.j → P (x).

2 The Formal Model

Our formal model of the Xenon security policy uses a specific notion of separation called
independence[17] that defines separation betweenLow andHigh as the independence of
Low’s view from anythingHigh might do.

If S represents the VMM and its guest operating systems as a (composite) CSP process,
H is the set ofHigh CSP events, andL is the set ofLow CSP events, then the separation
policy will have the form

LH(S) = (S
X
||

H
CHAOSH) \ H det (1)

5

where the equivalence is stable failures equivalence and the notationP det means process
P is deterministic. Following Roscoe [17], a processP is deterministic (P det) when

s⌢〈a〉 ∈ traces(P) =⇒ (s, {a}) /∈ failures(P) (2)

The best explanation of Equation 1’s definition can be found in Chapter 12of Roscoe’s
text [17]. This definition “subsumes” theHigh user (guest operating system) with the CSP
constantCHAOSH that not only can perform all possible sequences ofHigh events, i.e.
sequences a well-behaved user would not generate, but also can arbitrarily refuse to perform
any of them as well.

Intuitively, Equation 1 says that if a malicious guest operating system acting without
any restraint can cause some non-determinism inLowbehavior (i.e. there aren’t any system
or Low events that can restrict that particular behavior) then that malicious guestoperating
system can leak information against the allowable direction of information flow.

The introductory formulation of Equation 1 omits internal details about the system S
that is supposed to satisfy the MSL separation policy. These internal detailsinclude the
security domains, the guest operating systems, the boundary controller, and the VMM itself.
We now present a complete model that adds all of these details to the processS. We begin
with the individual events and channels used to communicate between processes, then we
describe the component processes that define communication patterns, and finish with a
presentation of the combined system.

2.1 Interfaces

The complete model uses four sets of communication channels between its interfaces. The
first two sets contain channels used for the separation policy

• hypi, i ∈ D ∪ {b}, that communicate events initiated by the guest corresponding to
security domaini and,

• sigi, i ∈ D ∪ {b}, for events initiated by the VMM, for security domaini.

Figure 1 depicts the use of the remaining two sets of channels, for sharing.Channels
rl iandrr of the request channelset are used to communicate requests to share data across
domains, to and from the boundary controller. Channelssl andsr i of theshare channelset
are used by the boundary controller and VMM to forward authorized sharing.

2.2 Events and Data Values

Each event has asecurity classthat is the same as the security domain of the highest domain
participating in the event. The VMM process shares every event with at least one guest
processGi but has no security domain itself. There are three kinds of events:

• separation policy eventshypi.op, sig i.e ∈ SEP that model the hypercalls and sig-
nals between guest processes and the VMM,

6

V

Gb

Gi

sl

G j

rr

rl i

sr j

VMM

guest guest

boundary controller

Figure 1: Communication Channels Between Process Interfaces

• sharing request eventsrl i.x.i.j, rr .x.i.j ∈ REQ that request sharing of datax from
domaini with domainj, and

• sharing policy eventssl .x.i.j, sr i.x.j.i ∈ SHR that transmit shared datax to domain
j.

So the setsSEP ,REQ ,SHR contain the separation, request, and share policy events re-
spectively. These events are used to describe the allowed sequences of interaction between
the VMM, its guests, and the boundary controller. We also partition these setson a security
domain basis, e.g.SEP i is the set of separation policy events for security domaini.

The valuesx.i.j associated with events in setREQ are taken from two setsYES and
NO that model the rules used by the boundary controller to restrict sharing ofdata across
security domains. SetYES contains values of the formx.i.j wherex is the value to be
passed across a security domain andi andj are the source and destination of the flow, and
the sharing is authorized1. The setNO contains all other possible sharing arrangements that
could be requested, i.e. unauthorized sharing; it is the complement ofYES with respect to
model events of the formx.i.j.

The use of the! and? separators in the model has no semantic significance but merely
serves as a reminder about which process is “sending” (!) or “receiving” (?) during a syn-
chronized event. When send or receive does not matter, we may use a dot (.) to replace the
! or ? separator.

2.3 Guest OS Processes

The guest operating systems are modeled by a finite set{Gk | k ∈ D} ∪ {Gb} of guest
operating system processesGi. Figure 2 shows GSPML diagrams [19, 20] of the guest
process structure. The boundary controller guest operating system processGb runs in the

1The setYES contains not only events representing flows in the direction defined by the security lattice but
also flows against that direction, that the users have authorized.

7

boundary controller security domain, i.e. it is not part of the VMM but in domain b. A
guest operating system process may also be referred to as a guest process or just a guest.
The guests run interleaved asG = |||Gi, i ∈ D ∪ {b}. Each guest processGi, i 6= b, is
defined as the interleaving of a separation component and a sharing component

Gi = GSEP i ||| GSHRi (3)

where
GSEP i = hypi!op → GSEP i � sig i?e → GSEP i

and

GSHRi =

�
x.i.j∈YES

rl i!x.i.j → GSHRi

�
x.i.j∈NO

rl i!x.i.j → GSHRi

� sr i?x.j.i : YES ∪ NO → GSHRi

Interleaving is used in the definition of the guests to isolate the separation behavior from the

rl i !x.i. j

GSHRi

x.i. j ∈ YES

rl i !x.i. j

GSHRi

x.i. j ∈ NO

hypi !op

GSEPi

sigi?e

GSEPi

GSEPi

Gi

G

i ∈ D ∪{b} GSEPi

GSHRi

Gi

sri?x. j.i ∈ YES∪ NO

GSHRi

GSHRi

Figure 2: GSPML Diagrams of Guest Structures

sharing behavior. The alphabet of processGSEP i is disjoint from the alphabet of process

8

GSHRi. The alphabet of a guest processGi is Fi. Notice that the guest processesGi do not
have any events in common with each other; that is their alphabetsFi are pairwise disjoint

and we could have connected them via alphabetized parallel as||
b

0
(Gi, Fi) and have the

same meaning.
Each guest process can choose values fromYES∪NO to request sharing via the bound-

ary controller. The boundary controller process makes sharing policy decisions and for-
wards approved data to the appropriate security domain, through the VMM.

2.4 Boundary Controller

The boundary controller processGb models enforcement of the sharing policy. Figure 3
shows a GSPML diagram of the boundary controller sharing. Equation 4 shows the struc-

GSHRb

i ∈ D

rr?x.i. j : YES

GSHRb

sl!x.i. j

i ∈ D

rr?x.i. j : NO

GSHRb

Figure 3: GSPML Diagram of Boundary Controller Sharing

ture of the boundary controller. The boundary controller is designed to honor requests in
YESand discard the others.

Gb = GSEP b ||| GSHRb (4)

where
GSEP b = hypb!op → GSEP b � sigb?e → GSEP b

9

sigi !e

VSEPi

i ∈ D ∪{b}

VSEPi

VSHR(rq,sq)

hypi?op

VSEPi

sl?z.i. j : YES∪NO

VSHR(〈x〉⌢rq,〈y〉⌢sq⌢〈z〉)

i ∈ D

sri?y.i. j : YES∪NO

VSHR(〈x〉⌢rq,sq)

i ∈ D

rl i?z.i. j : YES∪NO

VSHR(〈x〉⌢rq⌢〈z〉,〈y〉⌢sq)

rr !x.i. j

VSHR(rq,〈y〉⌢sq)

VSHR(〈x〉⌢rq,〈y〉⌢sq)

VSEPi

V(rq,sq)

Figure 4: GSPML Diagrams of VMM Structures

and

GSHRb =

�
i∈D

rr?x.i.j : YES → sl !x.i.j → GSHRb �

�
i∈D

rr?x.i.j : NO → GSHRb

The alphabet of the boundary controller is referred to asFb and the combined alphabets of
all guests including the boundary controller isF . The boundary controller communicates
with the other guests through the VMM.

2.5 VMM

The VMM processV (rq , sq) defined on alphabetF not only responds to hypercall events
and generates signals, it also connects sharing requests and responses via communication

10

buffers. Figure 4 shows GSPML diagrams of the VMM process structure. The top-level
structure of the VMM process is

V (rq , sq) = (|||V SEPi) |||VSHR(rq , sq) (5)

The separation componentsVSEP i of the VMM are defined as

VSEP i = hypi?op → VSEP i � sig i!e → VSEP i

for all domainsi in D and the boundary controller domainb.
Sharing via the VMM process is performed by a single processVSHR(rq , sq) that

connects sharing requests and responses via communication buffersrq (request queue) and
sq (sharing queue). These communication buffers give theVSHR(rq , sq) a parameterized
and double recursive structure. Readers familiar with this kind of CSP construction may
skip over the next three equations below to Equation 9. In Equation 9 and thethree base
cases preceding it, the variablesx, y, andz representx.i.j, y.i.k, andz.i.ℓ ∈ YES ∪ NO ,
respectively.

The initial base case is the VMM sharing process with no requests to pass and no data
to share, Equation 6. It can only accept a single value to be queued to its request queuerq
or sharing queuesq . Notice that use of thesl channel does not require an indexed choice
over security domainsD because channelsl only connects to the boundary controllerGb.

VSHR(〈〉, 〈〉) =

(�
i∈D

rl i?z : YES ∪ NO → VSHR(〈z〉, 〈〉))

� sl?z : YES ∪ NO → VSHR(〈〉, 〈z〉)

(6)

The next base case, Equation 7, is a VMM sharing process with a non-empty, possibly
singleton request queue〈x〉⌢rq and no data to share (i.e.sq = 〈〉). It can accept values to
enqueue or it can forward its single request to the boundary controller.Notice that use of
thesl andrr channels do not require an indexed choice over security domainsD because
channelssl andrr only connect to the boundary controllerGb.

VSHR(〈x〉⌢rq , 〈〉) =

(�
i∈D

rl i?z : YES ∪ NO → VSHR(〈x〉⌢rq⌢〈z〉, 〈〉))

� rr !x → VSHR(rq , 〈〉)

� sl?z : YES ∪ NO → VSHR(〈x〉⌢rq , 〈z〉)

(7)

The final base case is a VMM sharing process with a non-empty, possibly singleton, sharing
queue〈y〉⌢sq . It can forward shared valuey to its destination guest, or it can enqueue

11

G0 G1 G2

V

Gb

sr2
rl2

hyp2
sig2

hypb
sigb

sl
rr

sig1

hyp1

sr1
rl1

sig0

sr0
hyp0

rl0

sigb−1

rlb−1
srb−1

hypb−1

Gb−1. . .

Figure 5: Communication Diagram

further requests or sharing.

VSHR(〈〉, 〈y〉⌢sq) =

(�
i∈D

rl i?z : YES ∪ NO → VSHR(〈z〉, 〈y〉⌢sq))

� sl?z : YES ∪ NO → VSHR(〈〉, 〈y〉⌢sq⌢〈z〉) �

(�
i∈D

sr i!y → VSHR(〈〉, sq))

(8)

A VMM sharing process with both requests and data to share can interact with its guests
over all possible process choices.

VSHR(〈x〉⌢rq , 〈y〉⌢sq) =

(�
i∈D

rl i?z : YES ∪ NO → VSHR(〈x〉⌢rq⌢〈z〉, 〈y〉⌢sq))

� rr !x → VSHR(rq , 〈y〉⌢sq)

� sl?z : YES ∪ NO → VSHR(〈x〉⌢rq , 〈y〉⌢sq⌢〈z〉) �

(�
i∈D

sr i!y → VSHR(〈x〉⌢rq , sq))

(9)

2.6 Complete Model

Given the definition ofV (rq , sq) in Equation 5 we can now define the complete model as
the interface parallel combination of the guest and the VMM.

S = V (〈〉, 〈〉)
F
||

F
G (10)

12

Figure 5 shows the communication pattern for the complete model. As an example,
suppose guest processG1 wants to pass datax to guest processG2; it sends a “request”
message, via channelsrl1 andrr , to the boundary controllerGb, through the VMM process
V (rq , sq). If the boundary controllerGb decides that passing datax to security domain 2
is allowed, it sends a “share” message to the destination guestG2. This sharing would be
modeled by the trace

〈rl1.x.1.2, rr .x.1.2, sl .x.1.2, sr2.x.1.2〉

At this point it is important to recall that this model is a policy model and not a formal
interface or implementation model. Specific details of hypercalls and signals arenot essen-
tial to the MSL separation policy and the sharing policy does not need to include details of
how the VMM flows information on behalf of the boundary controller.

3 Rationale

The formal model presented here is consistent and complete with respect tothe MSL policy.
We can see that it is consistent and complete because

• the complete model of Equation 10 is deadlock free,

• the model of Equation 10 satisfies the MSL separation policy on the events inSEP ,
and

• the complete model of Equation 10 satisfies the MSL sharing policy on the events in
SHR.

It is easy to see that, as our model is defined, satisfaction of the MSL separation policy
is not possible with respect to the events inSHR ∪ REQ . Since the security class of
each event is the highest domain that shares it, every boundary controller event has the
highest classification. Even if the boundary controller only passes values in the allowable
direction, there will beHigh events that influence the future behavior of guest processes
at lower security classes. That is, eventsr i?x.j.i from Equation 3 will or will not happen
some time in the future, even though the domain controller’s pass of valuex conforms to
the security lattice flow. This is intuitively reassuring because it hints at the necessity of
dealing with the covert channels present in reliable interdomain sharing, asdescribed by
Kang, et al. [21–23]. We can show that there are no flows out of security domain i due
to separation policy eventshypi.op, sig i.e ∈ SEP i, for any security domaini. This is the
value of the independence definition: we can show that the other guests are independent of
the separation policy eventsSEP i involving guestGi.

The sharing policy can be verified using arank function approachthat models the prop-
agation of facts over events inSHR ∪ REQ . Intuitively, if the policy is enforced, then no
fact will be output by a guest process contrary to the sharing policy’s allowed flows.

In the following sections we sketch formal proofs of these three properties. Mechanical
proofs are left to future work.

13

3.1 Deadlock Freedom

The model’s failures equivalence definition of deadlock freedom is adapted from Roscoe
[11] and Schneider [18] as

(tr , Σ) /∈ failures(S) (11)

Intuitively, after any possible tracetr of the model of Equation 10, there must be some
event that the composite processS cannot refuse.

For our model to be deadlock free, it must be divergence-free. We show this by noticing
that the processes defined in Equations 3, 4, and 5 have guarded recursion and contain only
operators that do not introduce diversion. The interleaving of the guest processes|||Gi

introduces no divergence because the events of the guests are mutually disjoint. By the same
reasoning, the complete model of Equation 10 combines two divergence-free processes
using alphabetized parallel, so the complete model is divergence-free.

Given the divergence-free systemS of Equation 10, we can show that it is also deadlock
free. First, we notice that the following conditions hold

A. None of the component processes terminate.

B. The communications ofS in Equation 10 are static and the communications of the
components are entirely within their corresponding alphabets. There is no ambiguity
as to which processes participate in any event ofS.

C. The communications ofS aretriple disjoint [11]. That is, no event requires synchro-
nization by more than two component processes.

D. There is no use of renaming or hiding operators that potentially introducehidden
events.

E. We assume that each component isbusy, that is the component itself is deadlock-free.

where component process means any process in either the guestsG or the VMM V .
We argue that the design of Equation 10 is deadlock-free essentially because there is

no strong conflict[11] between any pair of communicating components; i.e. there are no
pairs of components where each has an ungranted request from the other. Because the
communication diagram ofS is a tree (see Figure 5), processS cannot have a deadlock
that involves a proper cycle of components,i.e more than two components. Given no strong
conflict, there cannot be a cycle that involves only two components.

3.2 Separation

Our proof that the model of Equation 10 satisfies the MSL separation policy over events in
SEP i applies a corollary of Roscoe [17]2: ProcessS is deterministic andseparable over
alphabetsH andL if and only if the processesLH(S) andLL(S) are both deterministic.

2Corollary 12.1.3

14

To be separable, a processP must first be divergence-free and nonterminating, i.e. no
X events. Additionally, processP must also be equivalent toP = PH ||| PL, with its
alphabet partitioned intoH andL.

Our proof strategy will be to show that the processS of Equation 10 is deterministic
and separable, by its construction.

Instead of restricting all flows fromHigh to Low, we only restrict flows caused by
separation policy eventshypi.op and sig i.e, for each guesti. Essentially, this rules all
events inSHR ∪ REQ to beLow events, for separation purposes. Let disjoint event sets
H = SEP i = {hypi.op, sig i.e}, for some security domaini, andL = F \ H be theHigh
andLowevents. Then we have thelazy abstractionof S

LH(S) = (S
F
||

H
CHAOSH) \ H (12)

Given the lazy abstraction ofS we can formulate the separation policy as

LH(S) det (13)

That is, the lazy abstraction must be deterministic, as explained in Equation 2.
The separation policy of Equation 12, that is the lazy abstractionLH(S), is not neces-

sarily deterministic becauseCHAOSH = STOPH ⊓RUN H is nondeterministic. To show
that our separation policy is satisfied, we apply the corollary by showing that processS of
Equation 10 is both deterministic andseparable.

We can say that processS is deterministic by its construction. The guests defined by
Equations 3 and 4 are deterministic because they use constructive recursion3 defined on an
external choice over component processes with disjointinitials. Since theinitials of the
external choice are disjoint, there is no ambiguity over which component process has been
chosen. In a similar way, the use of the interleaving operator||| which has the potential
to introduce nondeterminism, does not because the events of each guest are disjoint. So
the interleaved combination of guests|||Gi is deterministic. The VMM processV (rq , sq)
of Equation 5 is deterministic by 1) its use of constructive recursion over external choice
with disjoint initials and 2) disjoint event alphabets that avoid nondeterminism introduced
by interleaving. The alphabetized parallel operator joining the guests and the VMM does
not introduce nondeterminism, so the complete model of Equation 10 is deterministic, that
is S det.

The second part of our argument is to show that processS is separable over alphabets
H andL. By definition, event alphabetsH andL given at the beginning of this section are
partitioned. We need to show that processS of Equation 10 is equivalent to a process

S = (VSEP i
H
||

H
GSEP i) ||| (V ′

L
||

L
G′)

where processesV ′ andG′ are the remainder ofG andV after theH componentsVSEP i

andGSEP i are factored out. Our argument makes use of two algebraic properties ofCSP.

3Intuitively, the recursion does not involve use of the hiding operator. For a more formal discussion, see
Chapters 3 and 9 of Roscoe [17] and also page 106 of Chapter 4.

15

The first property is the fact thatP ||| Q = P
X
||

Y
Q, if the alphabetsX and Y are

disjoint. We refer to this first property asdisjoint alphabetized parallel equivalence. The
second property is the associativity of alphabetized parallel, that is

(P
X
||

Y
Q)

X ∪ Y
||

Z
R = P

X
||

Y ∪ Z
(Q

Y
||

Z
R) (14)

We begin by partitioning the alphabets intoH andL, so that Equation 10 becomes

V
H ∪ L

||
H ∪ L

G

Next we apply the commutativity of the interleaving operator toG, to move the selectedH
componentGSEP i to the left. Applying disjoint alphabetized parallel equivalence toG,
we get

V
H ∪ L

||
H ∪ L

(GSEP i
H
||

L
G′) (15)

We now apply the associativity of alphabetized parallel. InterpretingV asP , GSEPi asQ,
andG′ asR, from the RHS of Equation 14, we define the interfaces from left to right as
H ∪ L = X, H ∪ L = Y ∪ Z, H = Y , andL = Z. With this interpretation of processes
and interfaces, associativity applied to Equation 15 gives us

(V
H ∪ L

||
H

GSEP i)
H ∪ L ∪ H

||
L

G′ (16)

Next we moveVSEP i, theH component ofV , to the right, using commutativity of inter-
leaving. Applying disjoint alphabetized parallel equivalence toV , we get

((V ′

L
||

H
VSEP i)

H ∪ L
||

H
GSEP i)

H ∪ L
||

L
G′ (17)

Now we can apply associativity of alphabetized parallel to Equation 17. From the LHS of
Equation 14 we interpretV ′ = P , VSEPi = Q, andGSEPi = R, defining the interfaces
from left to right asL = X, H = Y, H ∪L = Y ∪X , andH = Z. With this interpretation
of processes and interfaces, associativity gives us

(V ′

L
||

H ∪ H
(VSEP i

H
||

H
GSEP i))

H ∪ L
||

L
G′ (18)

Applying commutativity we can move(VSEP i
H
||

H
GSEP i), which plays the role ofPH

in our argument, to the left

((VSEP i
H
||

H
GSEP i)

H
||

L
V ′)

H ∪ L
||

L
G′ (19)

A final application of associativity of alphabetized parallel, to Equation 19, applies the LHS
of Equation 14 as(VSEP i

H
||

H
GSEP i) = P, V ′ = Q, G′ = R. Defining the interfaces

from left to right asH = X, L = Y, H ∪ L = X ∪ Y , andL = Z gives us

(VSEP i
H
||

H
GSEP i)

H
||

L ∪ L
(V ′

L
||

L
G′) (20)

16

To complete the argument, we apply disjoint alphabetized parallel equivalence

(VSEP i
H
||

H
GSEP i) ||| (V ′

L
||

L
G′) (21)

Since we now have factored processS into two interleaved components over disjoint al-
phabets (as inP = PH ||| PL), we haveS as separable. Given our previous reasoning
that S by itself is deterministic, we can now apply Roscoe’s corollary to show that the
lazy abstraction ofS is deterministic. SinceLH(S) det, our separation policy holds for
Equation 10.

3.3 Sharing

To show that the sharing is secure, we must demonstrate that a sharing policy eventsr j .x.i.j ∈
SHR, wherex.i.j ∈ NO , does not appear in any trace of the system. Sharing request events
rl i.x.i.j ∈ REQ , wherex.i.j ∈ NO , do appear intraces(Gi) of a guest; guests other than
the boundary controller request all possible forms of sharing. However, we need to prove
that Equation 10 defines sharing such that onlyx.i.j ∈ YES values are passed from any
guestGi to any other guestGj .

Our approach is to use the rank function approach first reported by Schneider [24]. The
rank function approach assigns integers to the events and values in a security protocol, with
a rank function, and then shows that only events with positive rank can occur in a run of
the protocol. In our secure sharing argument, we consider the VMM and itsguests to be
principals in a security protocol and apply a rank function. We then show that only values
of positive rank are shared. Our argument differs from the usual rank function approach
because non-positive values do appear intraces(S). Instead of showing that no principal
receives a non-positive value, we show that the essential principal, theguard, never sends a
non-positive value, even though some non-positive values are submitted toit. The simple
construction of the guard makes it easy to establish this. Conventional security protocols
are more complex and require the complete approach shown by Schneider [24].

The rank function approach is well-suited to what we have to show. At the beginning
of this section we pointed out that events inREQ ∪ SHR can cause non-determinism, so
secure sharing is not defined according to the independence ofGj ’s view of the rest ofS.
Instead, sharing is secure if none of the values that appear onGj ’s sharing channelsr j are
unauthorized, i.e. in the setNO .

For our proof we use the rank functionρ shown below as Equation 22.

ρ(a) =











0 if a = sr j .x.i.j, x.i.j ∈ NO

0 if a = sl .x.i.j, x.i.j ∈ NO

1 otherwise

(22)

Our argument does not need to address model componentsGSEP i or VSEP i because they
do not contain events of rank0.

We begin by noticing that, by definition, valuesx.i.j ∈ NO do not appear on channelsl .
That is, the boundary controller process satisfies the propertyGb sat no ({sl .x.i.j} ⊆ NO);

17

all of the values associated with channelsl must be inYES , by the design ofGSHRb shown
in Equation 4.

GivenGb sat no ({sl .x.i.j} ⊆ NO) we can now say that
Gb

Fb

||
F

V (rq , sq) sat no ({sl .x.i.j} ⊆ NO) as well, because the alphabetized parallel

operator constrains what the VMM processV (rq , sq) can do. So we are now able to say that
no event of non-positive rank happens because of model componentGb

Fb

||
F

V (rq , sq).

This component does not generate such events on channelsl and it is the only place in the
whole model that they could be generated.

Given the absence of an eventsl .x.i.j ∈ NO in processGb
Fb

||
F

V (rq , sq) we can

now say that sharing queuesq never contains a valuex.i.j ∈ NO . By its construction,
the VMM process can never generate an eventsr j .x.i.j, x.i.j ∈ NO because the VMM
process’ sharing queue never contains the value needed to generate such an event. So
model componentV (rq , sq) sat no ({sr j .x.i.j} ⊆ NO). Given this, we can say that the
alphabetized parallel combination of the VMM and any guest processGj also does not have
ansr j .x.i.j, x.i.j ∈ NO event in any of its traces. That is
Gj

Fi

||
F

V (rq , sq) sat no ({sr j .x.i.j} ⊆ NO). Since this is the only component that could

generate such an event, we can say that no event of non-positive rank happens because of
componentGj

Fi

||
F

V (rq , sq). Having ruled out the only two events of non-positive rank,

we can say that the model of Equation 10 maintains positive rank with respectto the rank
function of Equation 22.

4 Semiformal Correspondence Demonstration

To apply this model to Xenon, we construct a semiformal correspondence demonstration.
This correspondence shows how the model represents Xenon’s actual policy enforcement.
Constructing and applying the correspondence demonstration helps us to identify interface
and design problems with the VMM that might not be apparent from the source code alone.
For all but the most casual software security, some form of correspondence demonstration
is essential because security is not preserved by refinement [9,25].

The concept of a correspondence demonstration is based on the commutative diagram
principle for verifying data abstraction [26–28].4 A commutative diagram captures the
relationship between concrete software and an abstract model. Within the model (or the
software), we are interested in the relationships between the entities definedby the model
(or the software), captured in the diagram as a mappingm between model (orM for the
software) objects. The model is shown to correspond to the software by arepresentation
functionA that maps concrete software entities to abstract model entities. Equation 23
shows a commutative diagram for correspondence to the Xenon formal model. An abstract
model properly corresponds to its target concrete software if the diagram commutes. A

4We recall this for the reader because this knowledge seems to have beenlost in some parts of the security
community.

18

diagram commutes if and only if, starting at the lower left corner, moving in bothdirections
to the upper right corner gives the same result, wherever the abstractionis defined. For
Equation 23 this ism ◦ A = A ◦ M .

model
entities

m // model
entities

Xenon
entities

A

OO

M +3 Xenon
entities

A

OO

(23)

For security, it is important that the representation functionA should be a total function
that maps all of the entities in the Xenon interface into entities in the formal securitypolicy
model. Otherwise, a flaw introduced by some unmapped software entity will notbe caught
by the policy-to-code modeling. For a similar reason, we prefer not to havedon’t care
conditions in our modeling that would leadm ◦ A ⊆ A ◦ M .

The commutative diagram principle does not have to be applied formally to benefit
software security. Semiformal mappings constructed from natural language rules and tables
can emulate a formal representation mapping.

Our semiformal correspondence demonstration is based on mapping the Xenon VMM
interface to pertinent characteristics of CSP events and processes of the formal model. We
view the hypercalls, additional traps that could happen, interrupts, individual instructions,
and high-level language statements attempted by each guest as “Xenon events”. We show
correspondence by mapping these “Xenon events” to CSP events in the formal model.

The Xenon interface has entities besides events and we will show how theseother en-
tities map to the formal model, after we understand the basic map. Our correspondence
demonstration should be considered as a separate model, being neither the formal security
policy model nor the abstract VMM described by the semiformal specificationof the VMM
interface.

4.1 Basic Mapping

The basic semiformal correspondence demonstration maps each “Xenon event” into an
event in the formal model. Xenon events include hypercalls, interrupts, traps, unprivi-
leged instructions, and privileged instructions. Privileged instructions include not only the
instructions that cause a guest OS execution to exit to the VMM but also the virtual machine
control instructions like VMX and VME5. Unprivileged instructions are also mapped. The
basic map is given as Table 1.

Although the basic map given in Table 1 is sufficient to show that the formal policy
model corresponds to the VMM interface, it may not be clear how this map is to apply to

5Xenon is currently targeted at 64-bit x86 architectures only.

19

Xenon VMM Interface Formal Policy Model
guest OS Gi

domain Gi

hypercall hypi.op

unprivileged instruction hypi.op

privileged instruction hypi.op

trap hypi.op

interrupt sig i.e

received event channel messagesig i.e

Table 1: Basic Xenon Interface to Formal Policy Model Map

all details of the VMM interface. Some further interpretation is necessary.

4.2 Externally Visible Data

The VMM interface provides data structures that are visible outside the VMM. These data
structures include virtual memory, virtual machine control structures, device driver front
ends, and structures like event channels that are presented as part of the Xen interface.
In principle, all effects of these data structures can be mapped on the basis of reads and
writes to the applicable memory, i.e. as “Xenon events”. Each read or write (or high-level
language operation on data) can be viewed as one or more “Xenon events” that map directly
to a CSP event. The particular events that happen define the state of each piece of data. In
some cases, this direct application of “Xenon events” will be the simplest wayto perform
the mapping of data to CSP model events.

In practice this direct application can be too complex. In those situations we represent
data in the Xenon interface by CSP processes. Using processes to modeldata structures
is a conventional CSP technique. Techniques for modeling shared data asprocesses are
well-defined and widely understood by the CSP community [17,18].

To apply this technique, we first model memory, devices, and data structures in the
Xenon interface specification as CSP processes. We define one process for each instance of
a data structure. With the data transformed into CSP processes, we can thenmap the CSP
events associated with those processes into the CSP events of the formal model. Complexity
is reduced because we can interchangeably refer to the interface data structures as though
they were processes or as the actual data structures.

Each of these “memory” processes defined by the Xenon interface is represented using
well-established CSP practice via “set” and “get” events that model readingand writing of
the corresponding data structure. Race conditions and similar issues then emerge as trace-
level characteristics of these processes, since CSP offers no built-in guarantees against race
conditions or similar issues. Modeling externally visible data as CSP processes does not
magically hide any of the potential difficulties that can arise with the real data structures

20

they represent.
So it is possible to simplify the mapping to the formal model by thinking about each

data structure by its name, but treating the data structure as though it were a process. The
fact that some CSP “processes” in this conceptual VMM interface are data structures is
irrelevant to the separation policy.

4.3 Request-Response and Transients

The semiformal correspondence demonstration introduces additional concepts that do not
appear in the formal model. The correspondence demonstration is a refinement of the
formal model, though the refinement is no longer mathematically well-defined. The first
refinement is that request and response (send and receive)may no longer map from the
Xenon interface as a single event. It is desirable to retain the single-eventrepresentation in
the correspondence demonstration, as much as possible. Request and response will have to
be separated in those cases where mapping from a single Xenon interfaceevent does not
preserve the CSP properties critical to the MSL information flow policy.

The actual VMM interface behavior will also include transient events suchas locking
and non-atomic changes to memory. In the formal model, transients could be modeled in
CSP by using hiddenτ events. Doing this would significantly increase the complexity of
the formal model and introduce non-determinism as a general property ofthe security pol-
icy. If the formal model were non-deterministic by its construction, then we could not use
determinism as the fundamental definition of security. So the formal model is deterministic,
without transient events. The correspondence demonstration introduces transient events as
semiformal concepts. The correspondence demonstration then has to show that the tran-
sient events in the Xenon interface satisfy the essential properties of CSPevents necessary
for MSL information flow policy enforcement, i.e. they cannot be used to signal from one
domain to another.

4.4 Nondeterministic Interrupts

The formal model does not address the nondeterminism of interrupts: events that come
from the environment rather than from the VMM or one of the guests. In themodel, inter-
rupts are represented by signal events arising deterministically within the VMM. CSP can
model nondeterministic interrupts accurately, via a special interrupt operator △. The sig-
nificant issue here is that the accurate CSP interrupt operator△ introduces nondeterminism
to the security policy, while the model’s definition of security requires determinism of all
events. (Accurate modeling would also significantly increase the complexity ofthe model
and distract us from security policy concepts.)

In the Xenon interface, interrupts will come from outside the system, in a nondetermin-
istic way. The issue then becomes one of showing that untrusted guests cannot cause or
prevent interrupts from the environment to another guest. This will justify the mapping of
nondeterministic Xenon interrupts into the deterministic signal events of the formal policy
model.

21

4.5 Subjects and Objects

The model’s separation policy given by Equation 12 defines security as determinism in the
lazy abstractionLH(S). Our correspondence demonstration may need to map the more
familiar subjects and objects into this definition, to satisfy some Common Criteria require-
ments. Xenon domains in the interface are security policy subjects and Xenonresources
(e.g. memory or devices) in the Xenon interface are security policy objects.So our map-
ping can show how Xenon subjects and objects fit into the formal policy model.

In the correspondence demonstration, Xenon domains then become guestprocesses of
the model, as shown in Equations 3 and 4. The data structures that implement domains in
Xenon will have correspondence processes for their memory, devices, CPU-defined struc-
tures, and Xenon-defined abstractions associated with a Xenon domain. Xenon’s domain0
is part of the VMM, in the correspondence demonstration. That is, domain0is not subject
to the restrictions of either the separation policy or the sharing policy.

4.6 Least Privilege

Levin, Irvine, and Nguyen have published aleast privilege separation model[29] for static
separation kernels. This model defines fine-grained access control over individual resources
exported to a domain. It also envisions fine-grained exportation of subjects; that is, the least
privilege model defines more than one subject per domain (using Xenon terminology). The
least privilege model is a very practical model that exemplifies the inevitable intertwining
of formal modeling and ultimate implementation. Least privilege separation anticipates
underlying hardware with segment registers. Segment registers are superior for enforcing
separation via hardware, for two reasons: 1) segment registers are easily associated with
specific hardware processes, and 2) detailed security attributes, i.e. a large number of bits
per process, can be amortized over many bytes of memory. Implementing a least privilege
policy with page-based memory management would be awkward and inefficient.

Xenon will be implemented on 64-bit x86 hardware. This hardware disablesthe seg-
ment registers, so it will not be possible for Xenon or any other VMM to enforce a least
privilege model on 64-bit x86 hardware; at least not with any kind of arguable simplicity.
On the other hand, Xenon’s multiple single levels (MSL) policy provides for adifferent
kind of least privilege, because it limits the interactions between guests to a single reliable
upward replication. We can also limit the privileges of the boundary controller Gb by di-
viding it into a family of single-interaction (i.e. one direction between one pair ofsecurity
domains) boundary controllersGij that control sharing from security domaini to j. While
this would have no impact on the formal proof of security6, the model would become clut-
tered, since this would requiren(n − 1) boundary controller processes in the model. In
practice, we only need single-interaction boundary controllers where thedefined security
policy calls for interaction.

6We can use the VMM processV as the root of the necessary tree-structured communication diagram.

22

4.7 Using the Model and Correspondence Demonstration

With these interpretations of the basic mapping established, we can now restatethe separa-
tion policy of Equation 12 in the following semiformal manner.

If the history of the VMM and all its domains determine that a Xenon event
of a guest in a low domain is possible (or impossible) then a guest in a high
domain cannot cause the same Xenon event to be impossible (resp., possible).

Recalling that reads or writes to Xenon domains will be “Xenon events” of thecorrespond-
ing processes, we see that a key implication of this policy is that no domain should be able
to read from or write to parts of any other domain.

This key implication is not the whole application of this model. Each interrupt, trap,
hypercall, and instruction is a distinct semiformal concept that must be validated against the
mapping. A high domain should not be able to modulate the possibility or impossibility of
any “Xenon event” in a low domain, if separation applies.

5 Summary

The Xenon formal security policy model combines both separation and sharing information
flow policies in one model. Previous formal security policy models only addressed separa-
tion; sharing has been either left out or assigned to trusted subjects that are not modeled.

The composability of CSP and its general suitability for modeling event-based non-
interference policies makes it possible to construct a combined model and a relatively sim-
ple one. The structure of the policy model is intuitively close to the structure ofan imple-
mentation, though it imposes no structure on any valid implementation. We have shown
how easy and natural it is to construct a semiformal mapping from the more complex world
of the Xenon interface to our model.

Our future plans for the model include 1) using it to design Xenon and 2) constructing
mechanical proofs either directly using a CSP-based tool like FDR or by embedding CSP
into another formalism like ACL2.

References

[1] P. Barham, B. Dragovic, K. Fraiser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,
and A. Warfield. Xen and the art of virtualization. InProc. 19th ACM Symposium on
Operating Systems Principles (SOSP-19), Bolton Landing, New York, USA, October
2003.

[2] R. Sailer, T. Jaeger, E. Valdez, R. Cáceres, R. Perez, S. Berger, J. Griffin, and L. van
Doorn. Building a MAC-Based security architecture for the Xen open-source hy-
pervisor. InProc. 21st Annual Computer Security Applications Conference, Tucson,
Arizona, US, December 2005.

23

[3] P. Karger. Multi-level security requirements for hypervisors. In21st Annual Computer
Security Applications Conference (ACSAC), Tucson, AZ, US, December 2005.

[4] The Common Criteria Project Sponsoring Organizations.Common Criteria for Infor-
mation Technology Security Evaluation, v. 3.1, rev. 1 edition, September 2006. also
referred to as ISO 15408.

[5] J. Goguen and J. Meseguer. Security policies and security models. InProc. IEEE
Symposium on Research in Security and Privacy, Oakland, California, US, April 1982.

[6] D. Denning. Secure Information Flow in Computer Systems. PhD thesis, Purdue
University, West Lafayette, Indiana, US, 1975.

[7] D. Denning. A lattice model of secure information flow.Communications of the ACM,
19(5), May 1976.

[8] D. Bell and L. LaPadula. Secure computer system: Unified exposition and Multics
interpretation. Technical Report ESD-TR-75-306,MTR-2997 rev. 1,MITRE, 1976.

[9] J. McLean. A general theory of composition for trace sets closed under selective in-
terleaving functions. InProc. IEEE Symposium on Research in Security and Privacy,
Oakland, California, US, May 1994.

[10] A. Roscoe, J. Woodcock, and L. Wulf. Non-interference through nondeterminism. In
Proc. ESORICS, Brighton, UK, November 1994.

[11] A. Roscoe. CSP and determinism in security modelling. InProc. IEEE Symposium
on Security and Privacy, Oakland, California, US, May 1995.

[12] P. Ryan and S. Schneider. Process algebra and non-interference. InProc. 12th IEEE
Computer Security Foundations Workshop, Mordano, IT, June 1999.

[13] E. Kleiner and T. Newcomb. On the decidability of the safety problem for access
control policies. InSixth International Workshop on Automated Verification of Critical
Systems (AVoCS), Nancy, FR, September 2006.

[14] W. Ruzzo, M. Harrison, and J. Ullman. Protection in operating systems. Communica-
tions of the ACM, 19(8):461–471, August 1976.

[15] D. Greeve, M. Wilding, and W. M. Vanfleet. A separation kernel formal security
policy. In Proc. ACL2 Workshop, Boulder, Colorado, US, July 2003.

[16] J. Alves-Foss and C. Taylor. An analysis of the gwv security policy. In Proc. ACL2
Workshop, Austin, Texas, US, November 2004.

[17] A. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall International,
1997.

24

[18] S. Schneider.Concurrent and Real-time Systems: The CSP Approach. John Wiley
and Sons, Ltd., 2000.

[19] J. McDermott and G. Allwein. A formalism for visual security protocol modeling.
Journal of Visual Languages and Computing, accepted October 2006.

[20] J. McDermott. A formal syntax and semantics for the GSPML language.Technical
report, U.S. Naval Research Laboratory, 2005.

[21] M. Kang, I. Moskowitz, and S. Chincheck. The pump: a decade ofcovert fun. InProc.
Annual Computer Security Applcations Conference, Tucson, Arizona, US, December
2005.

[22] M. Kang and I. Moskowitz. A pump for rapid, reliable, secure communications. In
Proc. ACM Conf. on Computer and Communications Security, Fairfax, Virginia, US,
November 1993.

[23] M. Kang, I. Moskowitz, and D. Lee. A network pump.IEEE Trans. on Software
Engineering, 22(5), 1996.

[24] S. Schneider. Verifying the correctness of authentication protocols in CSP. IEEE
Transactions on Software Engineering, 24(9):741–758, September 1998.

[25] D. McCullough. Specifications for multi-level security and a hook-upproperty. In
IEEE Symposium on Security and Privacy, Oakland, California, US, May 1987.

[26] C. Hoare. Proof of correctness of data representations.Acta Informatica, 1:271–281,
1972.

[27] W. Wulf, R. London, and M. Shaw. An introduction to the constructionand verifi-
cation of Alphard programs.IEEE Trans. on Software Engineering, SE-2:253–265,
1976.

[28] J. Gannon, R. Hamlet, and H. Mills. Theory of modules.IEEE Trans. on Software
Engineering, SE-13(7):820–829, July 1987.

[29] T. Levin, C. Irvine, and T. Nguyen. A least privilege model for static separation
kernels. Technical Report NPS-CS-05-003, U.S. Naval Postgraduate School, October
2004.

25

